Malaria Vaccine Development: Challenges and Prospects


  • Etefia Etefia University of Calabar
  • Paul Inyang-Etoh University of Calabar



malaria, immunity, Plasmodium falciparum, vaccine


This is a review on malaria vaccine development: challenges and prospects. The development of licensed malaria vaccines have been challenging because of the multi-stage life cycle, antigenic variation, and great genetic diversity of Plasmodium making it difficult for the right vaccine candidate among the thousands antigens of Plasmodium. Several vaccines for different stages of Plasmodium which include pre-erthrocytic stage vaccine, blood stage vaccines, using Plasmodium proteins, placenta vaccines and transmission-blocking vaccines (TBVs) which inhibit the sexual stage of malaria parasites. However, none of these vaccines are completely effective and have high reactogenicity. Due to the failure to formulate effective vaccines to tackle a single stage of the Plasmodium life cycle, the development of an effective multistage or multivalent malaria vaccine (MultiMalVax) is ongoing which could be the best approach to neutralize the sporozoites from developing to merozoites; and the merozoites emerging from hepatocytes and erythrocytes and; to break the sexual stage transmission. Therefore, a great understanding of the potential vaccine targets and how immunity acts is a key road-map to developing a fully effective vaccine against malaria.

Author Biography

Paul Inyang-Etoh, University of Calabar

Professor of Medical Parasitology


Arama C, Troye-Blomberg M. The path of malaria vaccine development: challenges and perspectives. J Intern Med. 2014; 275:456-466.

Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity. 2010; 33:451-463.

Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011; 10:539-550.

Nussenzweig RS, Vanderberg J, Most H, Orton C. Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature. 1967; 216(5111):160-162.

Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, et al. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis. 2002; 185(8):1155-164.

D'Antonio LE, Keshavarz-Valian H, Alger NE. Malaria vaccine antigen(s): detergent solubilization, partial isolation, and recovery of immunoprotective activity. Infection and Immunity. 1984; 43(1):442-444.

Sack B, Kappe SH, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines. 2017; 16 (5):403-414.

Hill AV, Reyes-Sandoval A, O’Hara G, Ewer K, Lawrie A, Goodman A, et al. Prime-boost vectored malaria vaccines: progress and prospects. Prime-boost vectored malaria vaccines: progress and prospects. Human Vaccines. 2010; 6 (1):78-83.

Reyes-Sandoval A, Berthoud T, Alder N, Siani L, Gilbert SC, Nicosia A, et al. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infection and Immunity 2010; 78 (1):145-53.

Wilde MD, Glabais JC. Hybrid protein between CS from Plasmodium and HBsAG. United States Patent. 1991; 5928902.

Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T., et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Human Vaccines. 2010; 6:97-106.

Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends in Parasitology. 2017; 33(3):202-213.

Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013; 341:1359-1365.

Bijker EM, Borrmann S, Kappe SH, Mordmüller B, Sack BK, Khan SM. Novel approaches to whole sporozoite vaccination against malaria. Vaccine. 2015; 33 (52):7462-468.

Mo AX, Pesce J, Hall BF. Exploring immunological mechanisms of the whole sporozoite vaccination against P. falciparum malaria. Vaccine. 2015; 33(25):2851-2857.

Duffy PE, Gorres JP. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines. 2020; 5:48.

van Buskirk KM, O'Neill MT, De La Vega P, Maier AG, Krzych U, Williams J, et al. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Pro Nat Acad Sci. 2009; 106(31):13004-13009.

Cooney LA, Gupta M, Thomas S, Mikolajczak S, Choi KY, Gibson C, et al. Short-lived effector CD8 T cells induced by genetically attenuated malaria

van Schaijk BC, Ploemen IH, Annoura T, Vos MW, Foquet L, van Gemert GJ, et al. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. eLife. 2014; 3:e03582.

Sack BK, Keitan GJ, Vaughan AM, Miller JL, Wang R, Kappe SHI, et al. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites. PLoS Patho. 2015; 11(5):e1004855.

Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med. 2016; 22:614-623.

Ballou WR, Cahill CP. Two decades of commitment to malaria vaccine development: Glaxo Smith Kline Biologicals. Am J Tro Med Hyg. 2007; 77(6 Suppl):289-295.

Luo M, Samandi LZ, Wang Z, Chen ZJ, Gao J. Synthetic nanovaccines for immunotherapy. Journal of Controlled Release. 2017; 263:200-210.

Ballou WR, Rothbard J, Wirtz RA, Gordon DM, Williams JS, Gore RW, et al. Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science. 1985; 228(4702):996-999.

Hollingdale MR, Sedegah M. Development of whole sporozoite malaria vaccines. Expert Rev Vaccines. 2017; 16(1):45-54.

Ballou WR. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol. 2009; 31(9): 492-500.

Mahmoudi S, Keshavarz H. Efficacy of phase 3 trial of RTS, S/AS01 malaria vaccine: The need for an alternative development plan. Human Vaccines and Immunotherapeutics. 2017; 13(9):2098-2101.

Edozien JC, Gilles HM, Udeozo IOK. Adult and cord-blood gammaglobulin and immunity to malaria in Nigerians. Lancet. 1962; 280:951-955.

Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg. 1991; 45(3):297-308.

Ouattara A, Mu J, Takala-Harrison S, Saye R, Sagara I, Dicko A, et al. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. Malaria Journal. 2010; 9:175.

Ogutu BR, Apollo OJ, McKinney D, Okoth W, Siangla J, Dubovsky F, et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS One. 2009; 4:e4708.

Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, et al. Extreme polymorphism in a vaccine antigen and risk of clinicalmalaria: implications for vaccine development. Science Translational Medicine. 2009; 1(2): 2ra5.

Miura K. Progress and prospects for blood-stage malaria vaccines. Expert Rev Vaccines. 2016; 15(6):765-781.

Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is areceptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011; 480:534-537.

Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, et al. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. Journal Clinical Investigation insight. 2017; 2(21):e96381.

Douglas AD, Williams AR, Illingworth JJ, Kamuyu G, Biswas S, Goodman AL et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat comm. 2011; 2:601.

Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson S.J, et al. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host and Microbe. 2015; 17(1):130-139.

Jin J, Tarrant RD, Bolam EJ, Angell-Manning P, Soegaard M, Pattinson DJ, et al. Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines. 2018; 3:32.

Good MF, Reiman JM, Rodriguez IB, Ito K, Yanow SK, El-Deeb IM, et al. Cross-species malaria immunity induced by chemically attenuated parasites. Journal of Clinical Investigation. 2013; 123(8):3353-3362.

Srinivasa P, Miura K, Diouf A, Ventocilla JA, Leiva KP, Lugo-Roman L, et al. A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. NPJ Vaccines. 2017; 2:14.

Tessema SK, Nakajima R, Jasinskas A, Monk SL, Lekieffre L, Lin E, et al. Protective immunity against severe malaria in children is associated with a limited repertoire of antibodies to conserved PfEMP1 variants. Cell Host and Microbe. 2019; 26:579-590.

Raj DK, Mohapatra AD, Jnawali A, Zuromski J, Jha A, Cham-Kpu G, et al. Anti- PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature. 2020; 582:104-108.

Raj DK, Nixon CP, Nixon CE, Dvorin JD, DiPetrillo CG, Pond-Tor S, et al. Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science. 2014; 344(6186):871-877.

Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Molecular Microbiology. 2003;49(1):179-191.

Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE. Maternal antibodies block malaria. Nature. 1998; 395:851-852.

Gangnard S, Lewit-Bentley A, Dechavanne S, Srivastava A, Amirat F, Bentley GA, et al. Structure of the DBL3X-DBL4ε region of the VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions. Scientific reports. 2015; 5:14868.

Doritchamou JYA, Morrison R, Renn JP, Ribeiro J, Duan J, Fried M, et al. Placental malaria vaccine candidate antigen VAR2CSA displays atypical domain architecture in some Plasmodium falciparum strains. Communication Biology. 2019; 2:457.

Mordmuller B, Sulyok M, Egger-Adam D, Resende M, de Jongh WA, Jensen MH, et al. First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy associated malaria. Clin Infect Dis. 2019; 69:1509-1516.

Khunrae P, Dahlbäck M, Nielsen MA, Andersen G, Ditlev SB, Resende M, et al. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies. Journal of Molecular Biology. 2010; 397(3):826-834.

Sirima SB, Richert L, Chêne A, Konate AT, Campion C, Dechavnne S, et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo controlled study. Lancet Infect Dis. 2020; 20(5):585-597.

Carter R, Mendis KN, Miller LH, Molineaux L, Saul A. Malaria transmission- blocking vaccines-how can their development be supported? Nat Med. 2000; 6:241-244.

Kaushal DC, Carter R, Rener J, Grotendorst CA, Miller LH, ` Howard RJ. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immun. 1983; 131:2557-2562.

Miura K, Swihart BJ, Deng B, Zhou L, Pham TP, Diouf A, et al. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane- feeding assay. Vaccine. 2016; 34:4145-4151.

Duffy PE, Kaslow DC. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infection and Immunity. 1997; 65:1109-1113.

Kariu T, Ishino T, Yano K, Chinzei Y, Yuda M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Molecular Microbiology. 2006; 59(5):1369-1379.

Canepa GE, Molina-Cruz A, Yenkoidiok-Douti L, Calvo E, Williams AE, Burkhardt M, et al. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines. 2018; 3:26.

Armistead JS, Morlais I, Mathias DK, Jardim, JG, Joy J, Fridman A, et al. Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria. Infection and Immunity. 2014; 82:818-829.

Malkin, E. M., Durbin, A. P., Diemert, D. J., Sattabongkor, J., Wu, Y., Mura, K., et al. A transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005; 23:3131-3138.

Outchkourov NS, Roeffen W, Kaan A, Jansen J, Luty A, Schuiffel D, et al. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Pro Nat Acad Sci. 2008; 105:4301- 4305.

Pandey AK, Reddy KS, Sahar T, Gupta S, Singh H, Reddy EJ, et al. Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infection and Immunity. 2013; 81:441–451.

University of Oxford. MultiMalVax (A Multi-Stage Malaria Vaccine): Seventh frame work report. [Accessed May, 2021] docs-results-305-305282-final1- multimalvax-final-report-final-170526.pdf

Ewer KJ, O'Hara GA, Duncan CJ, Collins KA., Sheehy SH, Reyes-Sandoval A, et al. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nature Communications. 2013; 4:2836.

Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, et al. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Science Translational Medicine. 2019; 11(474):eaau1458.

McShane H. Prime-boost immunization strategies for infectious diseases. Current Opinion in Molecular Therapeutics. 200; 4(1):23-27.

Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: Formulating future vaccines. Journal of Clinical Investigation. 2016; 126:799-808.

Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJI, et al. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. Journal of Immunology. 2013; 191:795-809.

Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine. N Eng J Med. 2015; 373:2025-2037.

Feng G, Boyle MJ, Cross N, Chan JA, Reiling L, Osier F, et al. Human immunization with a polymorphic malaria vaccine candidate induced antibodies to conserved epitopes that promote functional antibodies to multiple parasite strains. J Infect Dis. 2018; 218:35-43.




How to Cite

Etefia, E., & Inyang-Etoh, P. (2023). Malaria Vaccine Development: Challenges and Prospects. Medical and Pharmaceutical Journal, 2(1), 28–42.