MDM2 Antagonists and p53-Targeting Therapies in Cancer: Clinical Applications, Adverse Effects, and Resistance Mechanisms

Authors

  • Ali Majeed Ali Almukram Pharmacy School, University of Maryland, Baltimore, Maryland, United States
  • Hany Akeel Al-hussaniy Department of Pharmacy, Al-Nisour University College, Baghdad, 1001, Iraq.
  • Mohammed A. Jabarah Department of pharmacology, college of medicine, University of Baghdad. Iraq.
  • Salah Hassan Zain Al-Abdeen Department of Pharmacy, Al-Nisour University College, Baghdad, 1001, Iraq.

DOI:

https://doi.org/10.55940/medphar202567

Keywords:

Complementary Therapies, Hematologic Neoplasms, Ubiquitin’s, Leukemia, Myeloid

Abstract

Background: Worldwide, cancer is the primary cause of mortality. Research indicates that around half of all cancer types are caused by p53 mutations or downregulation. Alternative or complementary therapy methods are, therefore, desperately needed. The relationship between p53 and the proto-oncoprotein MDM2, a ubiquitin ligase frequently overexpressed in AML that causes the degradation of p53, is an intriguing place to start.

Objective: this review aimed to summarize all research on MDM2 inhibitors and clinical studies, and recorded side effects and resistance profile.

Methods: Review articles compiled from over 100 publications in PubMed, Scopus, and ClinicalTrials.gov using keywords like MDM2 inhibitors.

Results: MDM2 antagonists efficiently stabilize p53, resulting in tumor suppression in malignancies of p53 wild-type individuals. Promising results have been seen in several Phase I and II clinical studies, especially in solid tumors and hematologic malignancies. Adverse effects and medication resistance are still problems, though. P53-targeting medications, on the other hand, may be able to restore P53 function in mutant forms, offering a new treatment option for tumors that have failed previous therapies.

Conclusion: P53 medications and MDM2 antagonists mark a substantial breakthrough in targeted cancer therapy. Although the initial clinical outcomes are promising, further investigation is needed to optimize their application, overcome resistance mechanisms, and integrate them into personalized treatment plans. Future developments in understanding P53-MDM2 interactions are likely to lead to more effective cancer treatments.

References

Al-hassany HA, Albu-Rghaif AH, Naji M, Naji MA. Tumor diagnosis by genetic markers protein P-53, p16, C-MYC, N-MYC, protein K-Ras, and gene her-2 Neu is this possible. Pakistan Journal of Medical and Health Sciences. 2021;15(8):2350-4.

Falih, D. and Rakad, A.J., 2023. Association between Tissue Polypeptide Specific Antigen and Vascular Endothelial Growth Factor in Colorectal Cancer Patients and their Relation with P53 Expression and Global DNA Methylation. Journal of the Faculty of Medicine Baghdad, 65(4): 299-305

Grant S. Recruiting TP53 to target chronic myeloid leukemia stem cells. haematologica. 2020;105(5):1172.

Ibrahim BA, Gobran MA, Metwalli AE, Abd Elhady WA, Tolba AM, Omar WE. Interplay of LncRNA TUG1 and TGF-β/P53 expression in colorectal cancer. Asian Pacific Journal of Cancer Prevention. 2023;24(11):3957.

Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53–MDM2 interaction by small-molecule inhibitors: Learning from MDM2 inhibitors in clinical trials. Journal of hematology & oncology. 2022;15(1):91.

Koo N, Sharma AK, Narayan S. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. International journal of molecular sciences. 2022;23(9):5005.

Konopleva M, Martinelli G, Daver N, Papayannidis C, Wei A, Higgins B, Ott M, Mascarenhas J, Andreeff M. MDM2 inhibition: an important step forward in cancer therapy. Leukemia. 2020;34(11):2858-74.

Al-Hussaniy HA, Alburghaif AH, AL-Zobaidy MA, Alkuraishy HM, Mostafa-Hedeab G, Azam F, Al-Samydai AM, Al-tameemi ZS, Naji MA. Chemotherapy-induced cardiotoxicity: a new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs. Journal of medicine and life. 2023;16(4):491- 500.

Dinantia N, Anggorowati N. Expression of Simian Virus 40 Large T-Antigen: A Case Control Study of Non-Hodgkin Lymphoma. Asian Pacific Journal of Cancer Biology. 2021;6(1):21-5.

Wendt G, Shiroor DA, Adler CE, Collins III JJ. Convergent evolution of “genome guardian” functions in a parasite-specific p53 homolog. BioRxiv. 2021:2021-11.

AL-Allawi N, hilmi ferial, Kalisi khudair A-, maher sura, najim suhail. p53 expression in chronic lymphocytic leukaemia. JFacMedBagdad. 2005;47(2):126-31.

Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2021 Aug 1;1876(1):188556.

Abdullah MA, Jaafar AM, ALsaadawi AR. The prognostic role of p-53 protein Immunohistochemical expression in multiple myeloma. Journal of the Faculty of Medicine Baghdad. 2014;56(4):385-9.

Habib MA, Ibrahim MJ, Farhan SD. p53 in renal cell carcinoma: a biomarker for disease progression. Journal of the Faculty of Medicine Baghdad. 2011;53(1):54-6.

Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21 CDKN1A: molecular mechanisms and relevance in chemical toxicology. Archives of toxicology. 2015;89:155-78.

Jaafar AM, Al-Rubaie HA, Mustafa SA, Majeed BA. mRNA in situ hybridization analysis of p-53 cancer suppression gene and Bcl-2 oncogene in chronic lymphocytic leukemia. Journal of the Faculty of Medicine Baghdad. 2010;52(2):175-9.

Nguele Meke F, Bai Y, Ruiz-Avila D, Carlock C, Ayub J, Miao J, Hu Y, Li Q, Zhang ZY. Inhibition of PRL2 upregulates PTEN and attenuates tumor growth in Tp53-deficient sarcoma and lymphoma mouse models. Cancer Research Communications. 2024;4(1):5-17.

Zhang JQ, Saravanabavan S, Rangan GK. Effect of reducing ataxia-telangiectasia mutated (ATM) in experimental autosomal dominant polycystic kidney disease. Cells. 2021;10(3):532.

Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Medical Genomics. 2017 Dec;10:1-6.

Chen M, Chen X, Li S, Pan X, Gong Y, Zheng J, Xu J, Zhao C, Zhang Q, Zhang S, Qi L. An epigenetic mechanism underlying chromosome 17p deletion–driven tumorigenesis. Cancer discovery. 2021;11(1):194-207.

Najima Y, Sadato D, Harada Y, Oboki K, Hirama C, Toya T, Doki N, Haraguchi K, Yoshifuji K, Akiyama M, Inamoto K. Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT. Bone Marrow Transplantation. 2021;56(2):334-46.

Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. Molecular biomedicine. 2021;2:1-7.

Gohil CJ, Noolvi MN. Non peptidic small molecular inhibitors of the p53-MDM2 interaction. Int J Pharm Chem Anal. 2020;6(4):104-9.

do Patrocinio AB, Rodrigues V, Guidi Magalhães L. P53: stability from the ubiquitin–proteasome system and specific 26S proteasome inhibitors. ACS omega. 2022 Jan 27;7(5):3836-43.

Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS letters. 2022;596(21):2746-67.

Marvalim C, Datta A, Lee SC. Role of p53 in breast cancer progression: an insight into p53 targeted therapy. Theranostics. 2023;13(4):1421.

Al-Hussaniy HA, Al-Zobaidy MJ. Effects of Mdm2 Inhibitors on Cellular Viability of Breast Cancer Cell Lines HP100, MCF7. Bratislava Medical Journal/Bratislavské Lekárske Listy. 2024;125(10):627-34.

Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2021 Aug 1;1876(1):188556.

Al-Ali AA, Alsalami KA, Athbi AM. Cytotoxic effects of CeO2 NPs and β-Carotene and their ability to induce apoptosis in human breast normal and cancer cell lines. Iraqi Journal of Science. 2022:923-37.

Sakaguchi S, Nakagawa N, Wahba HM, Wada J, Kamada R, Omichinski JG, Sakaguchi K. Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties. International Journal of Molecular Sciences. 2023;24(23):16620.

Li R, Zatloukalova P, Muller P, Gil-Mir M, Kote S, Wilkinson S, Kemp AJ, Hernychova L, Wang Y, Ball KL, Tao K. The MDM2 ligand Nutlin-3 differentially alters expression of the immune blockade receptors PD-L1 and CD276. Cellular & molecular biology letters. 2020;25:1-21.

Tirunagaru V, Singh K, Pei X, Doebele RC. Combination of MDM2 inhibition with milademetan and MEK inhibition leads to improved anti-tumor activity in cancer models harboring WT TP53. European Journal of Cancer. 2022;174:S20-1.

Huang Y, Wolf S, Beck B, Köhler LM, Khoury K, Popowicz GM, Goda SK, Subklewe M, Twarda A, Holak TA, Dömling A. Discovery of highly potent p53-MDM2 antagonists and structural basis for anti-acute myeloid leukemia activities. ACS chemical biology. 2014 ;9(3):802-11.

Zhu W, Soonpaa MH, Chen H, Shen W, Payne RM, Liechty EA, Caldwell RL, Shou W, Field LJ. Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway. Circulation. 2009;119(1):99-106.

. Gounder MM, Bauer TM, Schwartz GK, LoRusso P, Kumar P, Kato K, Tao B, Hong Y, Patel P, Hong D. Milademetan, an oral MDM2 inhibitor, in well-differentiated/dedifferentiated liposarcoma: results from a phase 1 study in patients with solid tumors or lymphomas. European Journal of Cancer. 2020;138:S3-4.

Kojima Y, Shimizu T, Yonemori K, Koyama T, Matsui N, Kamikura M, Tomatsuri S, Okuma HS, Shimoi T, Noguchi E, Sudo K. 1521O A phase II biomarker-driven study evaluating the clinical efficacy of an MDM2 inhibitor, milademetan, in patients with intimal sarcoma, an ultra-rare cancer with highly life-threatening unmet medical needs (NCCH1806/MK004). Annals of Oncology. 2021;32:S1111-2.

Chen TW, Sanfilippo R, Jones RL, Schuetze SM, Garcia AS, Alvarez RM, Bui N, Ahn JH, Loong HH, Yen CC, Hong JY. 76MO Efficacy and safety findings from MANTRA: A global, randomized, multicenter, phase III study of the MDM2 inhibitor milademetan vs trabectedin in patients with dedifferentiated liposarcomas. Annals of Oncology. 2023;34:S1496.

Macarulla T, Yamamoto N, Tolcher AW, Hafez N, Lugowska I, Ramlau R, Geng J, Li J, Teufel M, Maerten A, LoRusso P. Efficacy and safety of brigimadlin (BI 907828), an MDM2–p53 antagonist, in patients (pts) with advanced biliary tract cancer: Data from two phase Ia/Ib dose-escalation/expansion trials.

Moschos SJ, Sandhu S, Lewis KD, Sullivan RJ, Puzanov I, Johnson DB, Henary HA, Wong H, Upreti VV, Long GV, Flaherty KT. Targeting wild-type TP53 using AMG 232 in combination with MAPK inhibition in Metastatic Melanoma; a phase 1 study. Investigational New Drugs. 2022;40(5):1051-65.

Wagner AJ, Banerji U, Mahipal A, Somaiah N, Hirsch H, Fancourt C, Johnson-Levonas AO, Lam R, Meister AK, Russo G, Knox CD. Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. Journal of clinical oncology. 2017 Apr 4;35(12):1304.

DiNardo CD, Rosenthal J, Andreeff M, Zernovak O, Kumar P, Gajee R, Chen S, Rosen M, Song S, Kochan J, Limsakun T. Phase 1 dose escalation study of MDM2 inhibitor DS-3032b in patients with hematological malignancies-preliminary results. Blood. 2016;128(22):593.

Andreeff M, Kelly KR, Yee K, Assouline S, Strair R, Popplewell L, Bowen D, Martinelli G, Drummond MW, Vyas P, Kirschbaum M. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clinical Cancer Research. 2016;22(4):868-76.

Saleh MN, Patel MR, Bauer TM, Goel S, Falchook GS, Shapiro GI, Chung KY, Infante JR, Conry RM, Rabinowits G, Hong DS. Phase 1 trial of ALRN-6924, a dual inhibitor of MDMX and MDM2, in patients with solid tumors and lymphomas bearing wild-type TP53. Clinical Cancer Research. 2021;27(19):5236-47.

Bauer S, Demetri G, Jeay S, Dummer R, Guerreiro N, Tan D, Jullion A, Meille C, Ferretti SR, Van Bree L, Halilovic E. First-in-Human, Phase I Dose-Escalation Study of CGM097, a HDM2 Inhibitor in Adult Patients With p53 Wild-type Advanced Solid Malignancies. British journal of cancer. 2021;125:687-98.

Abdul Razak AR, Miller WH, Uy GL, Blotner S, Young AM, Higgins B, Chen LC, Gore L. A phase 1 study of the MDM2 antagonist RO6839921, a pegylated prodrug of dasanutlin, in patients with advanced solid tumors. Investigational New Drugs. 2020 Aug;38:1156-65.

Anthony W. Tolcher et al., Preliminary results of a phase II study of alrizomadlin (APG-115), a novel, small-molecule MDM2 inhibitor, in combination with pembrolizumab in patients (pts) with unresectable or metastatic melanoma or advanced solid tumors that have failed immuno-oncologic (I-O) drugs.. JCO (2021); (39):2506-2506.

Chawla SP, Blay JY, Italiano A, Gutierrez M, Le Cesne A, Gomez-Roca CA, Gouw LG, von Mehren M, Wagner A, Maki RG, Higgins B. Phase Ib study of RG7112 with doxorubicin (D) in advanced soft tissue sarcoma (ASTS).

de Weger VA, de Jonge M, Langenberg MH, Schellens JH, Lolkema M, Varga A, Demers B, Thomas K, Hsu K, Tuffal G, Goodstal S. A phase I study of the HDM2 antagonist SAR405838 combined with the MEK inhibitor pimasertib in patients with advanced solid tumours. British journal of cancer. 2019;120(3):286-93.

Stein E, Chromik J, DeAngelo DJ, Chatterjee M, Noppeney R, Vos FD, Minami H, Jeay S, Meille C, Halilovic E, Mariconti L. Abstract CT152: Phase I dose-and regimen-finding study of NVP-HDM201 in pts with advanced TP53 wt acute leukemias. Cancer Research. 2017 Jul 1;77(13_Supplement):CT152-.

Jin K, Ding Y, Xu J, Liu Z, Zeng H, Su X, Zhang L, Sun J, Wu Y, Liu H, Chang Y, Zhu Y, Wang Z, Xu L, Zhang W, Xu J. Lethal clinical outcome and chemotherapy and immunotherapy resistance in patients with urothelial carcinoma with MDM2 amplification or overexpression. J Immunother Cancer. 2025 Jan 6;13(1):e010964. doi: 10.1136/jitc-2024-010964.

Allen B, Bottomly D, Köhnke T, Wang A, Lin HY, Johnson K, Kenna I, Streltsova A, Martin E, Chen R, Savoy L. A CEBPB/IL-1β/TNF-α Feedback Loop Drives Drug Resistance to Venetoclax and MDM2 Inhibitors in Monocytic Leukemia. Blood Journal. 2025 Feb 26:blood-2024028239. DOI: 10.1182/blood.2024028239

Kimura A, Tsubaki M, Obana T, Matsuo T, Komori R, Nagai N, Yamamoto T, Nishida S. MDM2 inhibitors induce apoptosis by suppressing MDM2 and enhancing p53, Bax, Puma and Noxa expression levels in imatinib‑resistant chronic myeloid leukemia cells. Biomedical Reports. 2025 ;22(4):1-8. DOI:10.3892/br.2025.1943

Wang S, Yang C, Tang J, Wang K, Cheng H, Yao S, Huang Z, Fei B. LSD1 is a targetable vulnerability in gastric cancer harboring TP53 frameshift mutations. Clinical Epigenetics. 2025 Feb 18;17(1):26. DOI:10.1186/s13148-025-01829-9

Brieghel C, Kinalis S, Yde CW, Schmidt AY, Jønson L, Andersen MA, da Cunha-Bang C, Pedersen LB, Geisler CH, Nielsen FC, Niemann CU. Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. Haematologica. 2019 Apr;104(4):789-796. DOI: 10.3324/haematol.2018.195818.

Chen C, Wei Z. Mechanisms and molecular characterization of relapsed/refractory neuroblastomas. Front Oncol. 2025 Mar 6;15:1555419. DOI: 10.3389/fonc.2025.1555419.

Kannan S, Li Y, Baran N, Yang X, Ghotbaldini S, Zhang Tatarata Q, Yoshimura S, Li Z, Hsiao Y, Balachander S, Andersen CL, Cidado J, Yu J, Jain N, Yang JJ, Konopleva M. Antileukemia efficacy of the dual BCL2/BCL-XL inhibitor AZD0466 in acute lymphoblastic leukemia preclinical models. Blood Adv. 2025 Feb 11;9(3):473-487. doi: 10.1182/bloodadvances.2024013423.

Drakos E, Singh RR, Rassidakis GZ, Schlette E, Li J, Claret FX, Ford RJ Jr, Vega F, Medeiros LJ. Activation of the p53 pathway by the MDM2 inhibitor nutlin-3a overcomes BCL2 overexpression in a preclinical model of diffuse large B-cell lymphoma associated with t(14;18)(q32;q21). Leukemia. 2011 ;25(5):856-67. doi: 10.1038/leu.2011.28.

Fontecha MB, Del Rosario Anadón M, Lahitou IMM, Weich N, Bengió R, Moiraghi B, Larripa I, Fundia AF. Exploring the significance of MDM2 gene promoter variants in chronic myeloid leukemia. Leuk Res. 2025 Feb;149:107644. doi: 10.1016/j.leukres.2025.107644.

Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev. 2024 May 2;76(3):414-453. doi: 10.1124/pharmrev.123.001026.

Yan H, Li H, Yin DH, Zhang ZZ, Zhang QY, Ren ZY, Hu Y, Zheng GY, Liu Y, Ma WY, Liu YN, Wang XX, Cai BZ, Chen HY. The PIWI-interacting RNA CRAPIR alleviates myocardial ischemia‒reperfusion injury by reducing p53-mediated apoptosis via binding to SRSF1. Acta Pharmacol Sin. 2025 Apr 3. DOI: 10.1038/s41401-025-01534-6.

Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: from mechanisms to implications. Cancer Letters. 2023:216147.

Zeiz A, Chayya S, Kassem Z, Hijazi A, Khawaja G, El-Dakdouki MH. Synthesis Of Ruthenium Complexes And Assessing Their Anticancer And Antibacterial Effects. Farmacia. 2023 Nov 1;71(6): 1129- 1142.

Loganathan T, George Priya Doss C. Computational molecular insights into ibrutinib as a potent inhibitor of HER2-L755S mutant in breast cancer: gene expression studies, virtual screening, docking, and molecular dynamics analysis. Front Mol Biosci. 2025 Mar 19;12:1510896. doi: 10.3389/fmolb.2025.1510896.

Li R, Wu X, Xue K, Wu S, Jiang G, He M, Xia Y, Liu H, Zhong M, Li J, Fan L, Li J. CircTADA2A stabilizes p53 via interacting with TRIM28 and suppresses the maintenance of FLT3-ITD acute myeloid leukemia. Leukemia. 2025 Apr 2. doi: 10.1038/s41375-025-02589-4.

Downloads

Additional Files

Published

2025-04-04

How to Cite

Almukram, A. M. A., Al-hussaniy, H. A., Jabarah, M. A., & Al-Abdeen, S. H. Z. (2025). MDM2 Antagonists and p53-Targeting Therapies in Cancer: Clinical Applications, Adverse Effects, and Resistance Mechanisms. Medical and Pharmaceutical Journal, 4(1), 47–63. https://doi.org/10.55940/medphar202567

Issue

Section

Review articles

Categories